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ABSTRACT
The study of adapting and evolving autonomous agents  should be
based on a complex  systems-theoretic framework which requires both
self-organizing and symbolic dimensions. An inclusive framework
based on the notions of semiotics and situated action is advanced to
build models capable of representing, as well as evolving in their
environments. Such undertaking is pursued by discussing the ways in
which symbol and self-organization are irreducibly intertwined in
evolutionary systems. This way, we re-think the notion of autonomy of
evolving systems, and show that evolutionary systems are
characterized by a particular type of syntactic autonomy.  Recent
developments in emergent computation in cellular automata are
discussed as examples of the emergence of syntactic autonomy in
computational environments.  New results emphasizing this syntactic
autonomy in cellular automata are presented.
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1. SITUATED SEMIOSIS

1.1 Self-Organization
Self-organization is seen as the process by which systems of
many components tend to reach a particular state, a set of
cycling states, or a small volume of their state space (attractor
basins), with no external interference. This attractor behavior is
often recognized at a different level of observation as the
spontaneous formation of well organized structures, patterns, or
behaviors, from random initial conditions (emergent behavior).
The systems used to study this behavior computationally are
referred to as dynamical systems or state-determined systems,
since their current state depends only on their previous state.
They possess a large number of components or variables, and
thus high-dimensional state spaces. 

Computational self-organization is often used to model
physical matter with systems such as  boolean networks or
cellular automata. The state-determined transition rules are
interpreted as the laws of some physical or chemical system
[19]. It follows from the observed attractor behavior that there
is a propensity for matter to self-organize [18, 10]. In this sense,
matter is described by the laws of physics and the emergent
characteristics of self-organization. In the following, whenever
the words matter and materiality are used, they should be

understood as reflecting this notion of self-organization both in
physical and computational environments.

1.2  Semantic Emergence
Self-organizing attractor values can be used to refer to
observables accessible to the self-organizing system in its
environment, and thus perform environmental classifications
(e.g. classifying neural networks). The process of obtaining
novel classifications of an environment by a self-organizing
system, which can only be achieved by structural changes to its
attractor landscape (e.g. weight changes in a neural network),
can be referred to generally as emergent classification [for
details on this argument please to 21 and 22]. Emergent because
it is the result of the local interaction of the basic components of
the self-organizing system and not from a global controller.

There are three levels that need to be addressed when
dealing with the notion of emergent phenomena in self-
organizing systems, in particular, of emergent classification.
First, there is the material, dynamical, substrate (physical law or
computational state-determinacy) which will be the causal basis
for all other levels that we may further distinguish. Second, we
have the attractor behavior of this dynamics. Finally, we have
the (possible) utilization of the set of attractors as referents for
some aspects of the interaction of the dynamical system itself
with its environment (e.g. the pattern recognition abilities of
neural networks).  No physical or formal description of the
dynamical system and its attractors alone can completely
explain this “standing-for”, or semantic, dimension [15]. Details
of this argument in [21, 22, 23].

1.3 Pragmatics: Selected Self-Organization and
Situated Semantics
For a dynamic system to observe genuine emergence of new
classifications, that is, to be able to accumulate useful
variations,  it must change its structure (that is, its components
characteristics establishing a particular attractor landscape). One
way or another, this structural change leading to efficient
classification (not just random change), has only been achieved
through some external influence on the self-organizing system.
Artificial neural networks discriminate by changing the structure
of their connections through an external learning procedure.
Evolutionary strategies rely on internal random variation which



must ultimately be externally selected. In other words, the self-
organizing system must be structurally coupled [11] to some
external system which acts on structural changes of the first and
induces some form of explicit or implicit selection of its
dynamic representations: selected self-organization [21, 22, 23].

Now, for selection to occur we must have some internal
vehicle for classification — there must be different alternatives.
The attractor landscape of self-organizing systems offers these
alternatives. One way of conceptualizing this, is to think of the
attractor landscape as a distributed memory bank [30], where
each attractor basin is seen as storing a given classification
function. Therefore, semantic emergence in self-organizing
systems depends on the existence of distributed memory.

Selected self-organization explicitly emphasizes a second
dimension of the semiosis of self-organizing systems in situation
with their environments. If classification implies semantic
emergence, selection implies pragmatic environmental
influence. In fact, these two dimensions of semiosis cannot be
separated; the meaning of the classifications of a self-organizing
system does not make sense until it is grounded in the feedback
from the repercussions it triggers in its environment. The
structural coupling, or situation, of a classifying, self-
organizing, agent in its environment is the source of meaning.
Indeed, selection does not act on memory tokens internal to a
classifying system but on the repercussions those trigger in an
environment. Situated Semantics is pragmatic. In this sense,
meaning is not private to the agent but can only be understood
in the context of the agent’s situation in an environment with its
specific selective pressures.

1.4 Von Neumann and the Syntactic Advantage
Von Neumann’s [31] model of self-replication is a systems-
theoretic criteria for open-ended evolution [for a detailed
discussion of this model see 21, 22, 23]. Based on the notion of
universal construction and description it provides a threshold of
complexity after which systems that observe it  can for ever
more increase in complexity (open-ended evolution). However,
unlike the situated semiosis of self-organizing systems described
in 1.3, this model clearly does not rely on a distributed but on a
local kind of memory. Descriptions entail a symbol system on
which construction commands are cast. These descriptions are
not distributed over patterns of activation of the components of
a self-organizing system, but are instead localized on “inert”
structures which can be used at any time — a sort of random
access memory. 

By “inert” structures, I mean components with many
dynamically equivalent states which can be used to set up an
arbitrary semantic relation with the environment.  For instance,
in the genetic system (which Von Neumann’s model
conceptually describes), most any sequence of nucleotides is
equally possible, and its informational value (genetic
information) is largely independent of the particular dynamic
behavior of the DNA/RNA sequence. Genetic information is not
expressed by the dynamics of nucleotide sequences, but is

instead mediated through an arbitrary coding relation that
translates such sequences into amino-acid sequences whose
dynamic characteristics ultimately express genetic information
into some environment. It is precisely the dynamic irrelevance
of nucleotide sequences (“inertness”) that makes DNA/RNA
ideal candidates for localized carriers of genetic information
(descriptions) given an arbitrary genetic code [15, 29].

Von Neumann showed that there is an advantage of local
memory over purely dynamic, or distributed, memory in self-
replication because if we do not have symbolic descriptions
directing self-replication, then an organism must replicate
through self-inspection of its parts. Clearly, as systems grow in
complexity, self-inspection becomes more and more difficult
[15]. The existence of a language, a symbol system, allows a
much more sophisticated form of communication. Functional,
dynamic structures do not need to replicate themselves, they are
simply constructed from non-functional (dynamically inert)
descriptions. For instance, for an enzyme to replicate itself, it
would need to have this intrinsic property of self-replication “by
default”, or it would have to be able to assemble itself from a
pool of existing parts. But for this, it would have to “unfold” so
that its internal portions could be reconstituted for the copy to
be produced [15]. With the genetic code, however, none of
these complicated gimmicks are necessary: functional molecules
can be simply folded from inert messages. This method is by far
more general since any functional molecule can be produced
from a description, not merely those that either happen to be
able to self-reproduce, or those that can unfold and fold at will
to be reproduced from available parts.

The genetic symbol system, with its utilization of inert
structures, opens up a whole new universe of functionality
which is not available for purely dynamical self-replication. In
this sense, it can evolve functions in an open-ended fashion. It
also introduces the third level of a semiosis of classifying
systems in situation with their environments: syntax – as defined
by a construction code.  Arguments for the idea of language as
a provider of such an enabling syntax for cognitive systems have
been pursued elsewhere [7, 22, 23].

1.5 Why do we need syntax?
It can always be argued that the random access memory the
genetic system establishes, is nothing but complicated
dynamics, and the syntactic dimension is just the result of our
subjective observation. But similar arguments can always be
pursued to discourage any kind of emergence. Indeed, the
notion of self-organization also requires an emergentist
argument as pursued in sections 1.1 and 1.2.  The dynamic/self-
organizing level results from the necessity of complementary
modes of description to describe our (ultimately subjective)
observation. So why stop there?  The genetic dimension has
established a new hierarchical level in evolutionary systems
which allows a greater level of control of the purely self-
organizing bio-chemical dynamics. Failing to recognize this
emergent symbolic level, would prevent the distinction between



self-organizing systems such as autocatalytic networks [10],
from living systems whose replication by genetic memory is
much more efficient than template-based replication. 

In evolutionary systems this is at the core of the feud
between those who claim that natural selection is the sole
explanation for evolution and those who stress that other aspects
of evolutionary systems, such as developmental constraints, also
play an important role. It is no wonder then that the first group
stresses the symbolic description, the gene, as the sole driving
force of evolution [3, 4], while the second group likes to think
of the propensities of matter or historical contingencies as being
of at least equal importance in evolution [6, 26, 10]. In
pragmatic terms, however, most evolutionary theorists,
acknowledge that all these factors play important roles [5]. 

Since all of these aspects of evolutionary systems co-exist,
we need inclusive theories and models that incorporate both
symbolic and dynamic characteristics [16, 21, 22, 12].
Classifying systems exist that are purely dynamic; they observe
the selected self-organization with distributed memory
discussed in 1.3 that is capable of semantic emergence in a
selective environment (pragmatics). But the introduction of the
syntactic level as prescribed by Von Neumann defines a richer
(open-ended) classifying function available to systems capable
of a full situated semiosis (semantics, pragmatics, and syntax)
with their environments.

2. SYNTACTIC AUTONOMY

2.1 Semiotic Codes
Semiotics concerns the study of signs/symbols in three basic
dimensions: syntactics (rule-based operations between signs
within the sign system), semantics (relationship between signs
and the world external to the sign system), and pragmatics
(evaluation of the sign system regarding the goals of their users)
[13]. When Von Neumann’s universal constructor interprets a
description to construct some automaton, a semiotic code [29]
is utilized to map instructions into actions to be performed in
some environment to construct the described automaton. When
the copier copies a description, only its syntactic aspects are
replicated. Semiotics leads us to think of symbols not simply as
abstract memory tokens, but as material tools [17] for a situated
open-ended semiosis of classifying systems with their
environments, which requires the definition of components that
interact and self-organize with the laws of their environment
[20]. Thus, a situated semiotic code presupposes a set of
components (e.g. parts and processes) for which the instructions
are said to “stand for”. Descriptions are not universal as they
refer to building blocks which cannot be changed without
altering the meaning of  descriptions. 

We can see that a self-reproducing organism following this
scheme is an entanglement of symbolic controls and component
constraints which is closed on its semantics only through its
repercussions in an environment. Pattee [16] calls such a
principle of self-organization semantic closure. Perhaps a better

description would be to refer to it as semiotic closure since this
principle explicitly recognizes the three semiotic dimensions of
semantics, pragmatics and syntax [25]. 

The implications of the component (enabling and
restraining) constraints for systems observing a semiotic closure
in situation with their environments have been investigated
conceptually and experimentally in [21, 22, 23, 25]. The study
of genetic systems with richer syntactics, in particular the
modeling of the RNA editing system, have also been explored
in [20, 22, 25]. Here I examine the emergence of syntax in
systems in selected self-organization with their environments,
particularly, with respect to the notion of autonomy.

2.2 Reference and Syntactic Autonomy
A classifying self-organizing system is autonomous if all
processes that establish and sustain its dynamics are internally
produced and re-produced over and over again [11]. These are
the systems capable of self-reference (including hurricanes)
[27].  But how autonomous are the systems that follow some
form of situated semiosis with their environments? Given the
arguments for Selected Self-Organization, we know that it is the
environment which ultimately selects the dynamic
configurations of classifying systems. The structural coupling
between system and environment [19] on which situated
semiosis is based requires this structural openness [11, 14],
other-reference [27, 8], or external scaffolding [1]. Semantics
is therefore defined only by the situated, pragmatic, conjugation
of system and environment, which indicates that even though
the organization of the dynamic components of self-organizing
classifying systems is autonomous, these systems are not
semantically autonomous.  But is there any kind of semiotic
autonomy in evolutionary systems?

Biological systems have developed a system of structural
perturbation of their self-organization clearly based on a
(genetic) code that essentially implements Von Neumann’s
scheme of inert symbolic descriptions (section 1.4). It is
undeniable that this syntactic code is completely specified
within organisms since its reading and constructing machinery
is found within each cell: an autonomous code defined by
specific syntactic rules. Even though environmental conditions
clearly affect what is decoded in different circumstances [20,
25], the code itself  remains fixed. The ability to generate such
a powerful system of assembly of self-organizing encoded
components for the construction of evolving classifying systems
[22, 25], is the one defining characteristic of all known life
forms, which somehow produced an autonomous syntax for a
more efficient situated semiosis with the environment.  

A consequence of this argument is that the concept of
autonomy alone is not enough to characterize living organisms,
unless by that we mean, in addition to material autonomy
(organizational closure), also syntactic autonomy. In other
words, situated semiosis is based on organizational closure
(self-organization, self-reference, etc),  semantic openness by
virtue of a situated coupling to an environment (other-



reference), and syntactic autonomy (syntactic stability or inert
codes). Hoffmeyer [8] pursues a similar argument to insist that
it is the stable integration of self-reference and other-reference
(established by the syntactic autonomy of the Von Neumann
code, I argue here) which establishes the minimum requirement
for an umwelt [28], or evolving personal categorizations of an
environment,  and thereby sets living systems apart from all
their non-living predecessors.

Regarding cognitive systems, it is possible that human
language established a system of structural perturbation of self-
organizing processes similar to the genetic scheme [7, 22, 24],
and that somehow, the brain has evolved another type of coded
semiotic closure with its environment. Language may be a
syntactic tool that allows cognition the ability of open-ended
conceptual variety. For this reason, the study of the emergence
of syntactic autonomies is relevant for both evolutionary
systems research and cognitive science. Next a model is
discussed which may give some insights into the problem of the
origin of syntactic autonomy.

3. SYNTACTIC AUTONOMY IN COMPUTATIONAL

ENVIRONMENTS

3.1 Emergent Particle Computation
A very interesting problem that genetic algorithms (GA’s) have
been used successfully in, is the evolution of Cellular Automata
(CA) rules for the solution of non-trivial tasks. Certain CA rules
are capable of solving global tasks assigned to their lattices,
even though their transition rules are local (each cell computes
its next value given the current value of the cells in its
immediate neighborhood). One such tasks is usually referred to
as the density task: given a randomly initialized lattice
configuration (IC), the CA should converge to a global state
where all its cells are turned “ON” if there is a majority of “ON”
cells in the IC, and to an all “OFF” state otherwise. This rule is
not trivial because the local rules of the component cells do not
have access to the entire lattice, but can only act on the state of
their immediate neighborhood.  

Crutchfield and Mitchell [2] used a GA to evolve the CA
rules for such a task. The GA found a number of fairly
interesting rules, but a few of the runs evolved very interesting
rules (with high fitness) which create an intricate system of
lattice communication. Basically, groups of adjacent cells
propagate certain patterns across the lattice, which as they
interact with other such patterns “decide” on the appropriate
solutions for the lattice as a whole. An intricate system of
signaling patterns and its communication syntax has been
identified, and can be said to establish the emergence of
embedded-particle computation in evolved CA’s  [2, 9]. The
emergent signals (or embedded particles) refer to the borders of
the different patterns that develop in the space-time diagrams.
If the areas inside these patterns are removed, their boundaries
can be identified as a system of signals with a definite syntax, or
emergent logic grammar. This syntax is based on a small

number of signals, �, �, 
, �, �, and �,  and a small number or
rules such as: � + 
 � �, meaning that when signals � and 

collide, the � signal results. Please refer to the references above
for more details.

These experiments are very interesting because from the
interaction of self-organization (CA’s)  and selection (GA) a
very simple semantics emerges from the selective pragmatics of
the GA: the CA rule either classifies its initial lattice
configurations correctly or incorrectly. Now, most CA rules
evolved with this set up show very simple space-time patterns:
they try to solve the problem by block-expansion, that is, when
large neighborhoods of either “ON” or “OFF” states exist in the
initial configuration, they are expanded. These block expansion
rules solved the task in typical dynamical fashion: by taking into
account only local information.

Instead, the system of particle computation uses signals that
are capable of integrating distant global information to solve the
task. These CA rules rely on a system of personal (to the CA
rule) signals used to communicate across the lattice and
compute the answer to the task: an autonomous sign system that
grants great selective advantage to the rules capable of
developing it. The particle computation system truly introduces
a qualitatively different way of solving the task: through the
emergence of autonomous syntax, which allows certain rules to
gain access to global lattice information. Obviously, such a
system does not possess the rich self-reproduction scheme of
Von Neumann, but it does show how the emergence of
autonomous syntax grants simple dynamical systems the ability
to move from trivial to non-trivial classification of their
interaction with an environment.

3.2 Increasing Arbitrariness: Logical Tasks
The signals of the emergent particle computation system in
CA’s, even though being a small set of discrete entities, are not
full-fledged symbols in the senses described in section 1,
because they do not possess the degree of arbitrariness required
of pure symbols: the syntax is specific to the task solved.
However, very similar signals and grammars can be evolved to
solve different tasks, e.g. the synchronization task [ 9]. In other
words, this class of CA’s can develop similar signals to solve
different problems. 

To increase the arbitrariness of the emergent syntax of these
rules, we can evolve rules that are good at solving several tasks.
I have conducted some experiments to evolve CA rules with
radius 3 which can solve both the density task and some related
logical tasks. To implement logical tasks, we divide the CA
lattice in two halves (the center cell is not used). The first half
is interpreted as the first bit, and the second half as the second
bit. A bit is “ON” if there is a majority of “ON” cells in its half,
and “OFF”otherwise. Notice that since the boundary conditions
of the lattice are periodic, this lattice has two boundaries
between the two halves or bits. The cells on the neighborhood
of these boundaries compute their values from cells in both
halves, which in most cases makes the computation on these



boundaries unreliable. However, since we are looking for global
communication  across the lattice, we expect the local errors at
the boundaries not to be too relevant for the global computation,
especially as lattices grow in size.

We can now define such logical tasks as the AND and the
OR task, according to the values of the bits. For the AND (OR)
task, for all values of the bits the lattice should converge to an
all “OFF” (“ON”) state, except when both bits are “ON”
(“OFF”). These tasks are both related to the density task
because when the density of both halves is below (over) 0.5,
both bits are “OFF” (“ON”), leading to a desired final lattice
with all cells “OFF” (“ON”). They differ for the cases when the
two halves of the lattice have opposing densities. In other
words, these tasks should perform the density task in each half,
and then integrate the results, with the AND (OR) task biased by
“OFF” (“ON”) information on either half. 
Several rules were evolved with a GA whose initial

population was composed of some of the best rules evolved
so far for the density task, and whose fitness function was
derived from presenting each rule with 100 different initial
lattices, 50 to be analyzed by the density task, and the other
50 by either the AND or the OR task. The 50 rules to be
presented to the density task have their density of “ON’s”
uniformly distributed over the unit interval (just as the
experiments described in 3.1). The 50 rules presented to the
AND (OR) task are biased to a uniform distribution of lattices
leading to at least one bit “OFF” (“ON”) 50% of the time, and
both bits “ON” (“OFF”) the other 50%. If we were to use an
unbiased generation of lattices, only 25% of the time would

the case of both bits “ON” (“OFF”) be generated, making
rules that always tend to “OFF” (“ON”) always too favorable.

From these experiments, several rules were evolved that can
solve both the density task and one of the logical tasks very
well. Also, unlike the density task, the performance of the
logical tasks often increases with the lattice size, probably
because the boundary errors described earlier loose relevance
in some cases as the density situation in each bit has a larger
lattice to be resolved. I would expect this behavior to be a
consequence of the velocity of the particles evolved, but such
an analysis will be left for future research. A more detailed
analysis of the particle computation systems of these recently
evolved rules is forthcoming. Table I presents some of the
rules evolved in hexadecimal format (each hexadecimal digit
should be converted to 4 binary digits to obtain the CA rule;
the left bit is the least significant one).

The relevance of these experiments is that they show that
there is a family of particle computation rules which with a few
mutations can develop a system of particle computation that can
solve two different, yet related, tasks. Indeed, the rules were
evolved from a population of rules that solve very well the
density task. The particle computation systems provides the
self-organizing CA the ability to adapt to a new environment
that requires the solution of two similar tasks. In other words, it
has the ability to evolve into a system that with the same syntax
can effectively solve a related class of problems and not just one
single task. In this case the class of tasks includes the density
task and some logical task that is coherent with the density task.

Rule
Pdens PAND POR 

149 599 999 149 599 999 149 599 999

0504058705000F77037755837BFFB77F [2] .773 .725 .707 .713 .73 .738 .664 .578 .548

000F730F001FFF0F000FFF0F001FFF1F [Das Rule] .823 .777 .763 .68 .684 .68 .733 .686 .675

050055050500550555FF55FF55FF55FF [Koza rule] .823 .766 .73 .679 .674 .644 .727 .671 .642

0760437B0700413507600F7F47F577FF [Jouille Rule] .833 .788 .771 .656 .642 .62 .747 .736 .743

0057005D005F005D085FFF7F405FFF5F .78 .705 .668 .77 .783 .784 .634 .501 .453

005F1053405F045F005FFD5F005DFF5F .635 .510 .503 .84 .76 .754 .441 .261 .254

005F005F005F005F005FFF6F005FFF5F .805 .755 .737 .624 .605 .581 .756 .738 .743

0504070705002573077755B37BFFF77F .745 .65 .61 .501 .421 .371 .784 .793 .785

Table I: Unbiased performance (random generation of 100000 IC’s) for the density, AND, and OR tasks, for CA lattices of
dimension 149, 599, and 999. The first 4 rules are some of the rules fed to the initial population of the GA described above;
the last 4 rules are some of the best rules evolved with this GA.



The ability to solve more than one task increases the
arbitrariness of the emergent syntax of these rules, as the same
syntactic rules of particle computation are used to compute
different tasks. This increased arbitrariness shows that the
particle-computation system can develop a larger scope of
computations with particles that more and more be regarded as
arbitrary symbols. 

4. EMERGENCE OF ARTIFICIAL SYMBOLS

These particle-computation CA rules possess the intertwined
semantics and pragmatics of selected self-organization (CA
rules evolved with a GA), plus a primordial autonomous syntax
(the emergent grammar of the particles) in an artificial
environment.  In this sense they are a case of a purely
computational situated semiosis as described in section 2, which
represents a truly exciting new development in evolutionary
systems research.  These experiments provide an abstract model
of how signs can emerge from purely dynamical interactions
evolved under an artificial situated semiosis. These experiments
seem to indicate that it is possible to evolve symbols from
artificial matter, in other words, that it is possible to study
syntactic autonomy, so important to distinguish living from non-
living systems as discussed in section 2, in computational
environments.
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